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Abstract

Generation of a three-dimensional model from an unorganized set of points is an active area of research
in computer graphics. Alpha shapes can be employed to construct a surface which most closely reects
the object described by the points. However, no �-shape, for any value of �, can properly detail discon-
tinuous regions of a model. We introduce herein two methods of improving the results of reconstruction
using �-shapes: density-scaling, which modulates the value of � depending on the density of points in
a region; and anisotropic shaping, which modulates the form of the �-ball based on point normals. We
give experimental results that show the successes and limitations of our method.

1. Introduction

Generation of a three-dimensional model from an un-
organized set of points is an active area of research.
Such point-sets come from a number of common
sources, such as range data from three-dimensional
scanning hardware, implicit surface sampling 11, and
medical imaging.

The notion of �-shapes provides an elegant mathe-
matical framework for extracting the geometric struc-
ture of a set of points in three dimensions. In partic-
ular, �-shapes can be used to reconstruct a polygonal
surface which approximates an input set of surface
point-samples 3. It uses distances between points to
decide which input points to connect with triangles.
Briey, the �-shape is a set of triangles and tetrahe-
dra that is a subset of the Delaunay triangulation of
the input point set. The Delaunay triangulation has
the property that it connects points to their closest
neighbours, but produces a complete tetrahedrization
of space. Since we wish to obtain a surface, we need to
carefully select a subset of the triangles in the triangu-
lation. One elegant method for doing this is to de�ne
a forbidden region around each potential triangle and
retain only those triangles whose forbidden region is
empty of all other points.

The theory of �-shapes provides such a region. For
triangles not on the convex hull of the point set, it
is the smallest sphere circumscribing the triangle. A
triangle is then in the �-shape if the radius of this
sphere is at most �.

While this de�nition gives good results for point sets
of roughly uniform density with large separation be-
tween surfaces, this de�nition is clearly not optimal
for non-uniform point sets, or surface which are rela-
tively closer than their sampling density. We therefore
propose two extensions to the de�nition of �-shapes
to alleviate these problems and allow reconstruction
of a much larger class of point sets.

� Anisotropic scaling: we allow the spherical for-
bidden region to vary in shape, and change the tri-
angulation accordingly.

� Density scaling: we vary the value of � depending
on the local point density.

For anisotropic scaling, we assume that we are given
normal information about the points; if this informa-
tion is not available, it can be approximated using a
least-squares technique such as in 5. The forbidden
region becomes an ellipsoid whose axes and eccentric-
ity is determined according to the local point normal
information. In essence we vary the local metric ten-
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sor according to the point normals. The underlying
assumption here is that the �eld of normals is su�-
ciently smooth. The Delaunay triangulation must be
modi�ed to take into account this extension and we
give an incremental algorithm to retriangulate the in-
put point set based upon the new metric tensor.

Varying scale as a factor of local point-density al-
lows us to di�erentiate areas of the point set with
di�erent densities and avoid connecting triangles be-
tween such areas.

As in the case of �-shapes, these methods are meant
to be used in an interactive setting. For each of the
above extensions, we provide a user speci�ed parame-
ter which allows the user to vary the impact of their
e�ects interactively. We emphasize that a signi�cant
contribution of this work is the ease with which it can
be incorporated into �-shape or triangulation frame-
works.

The remainder of this paper is organized as follows:
in the next section, we describe Delaunay triangula-
tion and �-shapes in more detail, and explain how dis-
continuities in the model can a�ect results. In Section
3, we outline our method for generating anisotropy,
i.e. (non-uniform shape) ellipsoidal forbidden regions.
Here we take advantage of point-normal information
to detect certain discontinutities. Section 4 explains
the density-scaling method, which varies the size of
the �-ball throughout the model. In the remainder
of the sections, we discuss our implemention of these
methods and their results, and give a sketch of what
future directions we see for this topic.

2. Previous Work with Alpha-Shapes

In this section we de�ne alpha shapes and related con-
cepts. We show how, in conjunction with a Delau-
nay triangulation, alpha shapes can be used to gen-
erate the desired three-dimensional form from a set of
points. We also demonstrate the inherent weaknesses
in that method.

2.1. Delaunay Triangulation

A set of points P de�nes a unique triangulation known
as the Delaunay triangulation. A standard algorithm
for its construction is incremental construction us-
ing Lawson's ip method 3; a current triangulation is
maintained (initially a tetrahedron), and points are in-
serted into the triangulation one by one. At each step,
the triangulation is modi�ed to maintain the Delau-
nay property: the circumscribing sphere of each tetra-
hedron in the triangulation cannot contain any of the
input points. To maintain this property, those tetra-
hedra which fail a local test are ipped such that the
new edge is part of the Delaunay triangulation.

We �rst describe the test and ip process in two
dimensions for clarity, and then show how it is easily
extended to three dimensions. We will use this ipping
step in our retriangulation step, when we take normals
into account.

2.1.1. Flipping in Two Dimensions

For each edge pq in an arbitrary triangulation T , we
check if it is locally Delaunay. An edge is locally Delau-
nay if it is either on the boundary of the convex hull,
or, if not, we �nd the two triangles incident to pq,
4pqr and 4pqs. If the circle circumscribed by points
pqr contains point s, or if the circle circumscribed by
pqs contains r, then this edge is not locally Delau-
nay. However, only a simple change is necessary: we
ip the edge to create the other two triangles possible
with points pqrs (see Figure 1).

This new edge is necessarily locally Delaunay. We
test each edge in this fashion; when all edges in T 0 are
locally Delaunay, it is a Delaunay triangulation.

2.1.2. Flipping in Three Dimensions

For three dimensions, our triangulation is a set of
tetrahedra over the points in P forming a simplicial
complex. A set of 5 points in convex positions can have
only two possible triangulations, as illustrated in Fig-
ure 1. One of them is guaranteed to satisfy the Delau-
nay property as described above: the circumscribing
spheres of the tetrahedra involved contain no points
in their interior. If one of the tetrahedra does not have
this property, we can ip to the other triangulation.
It turns out that if this procedure is applied to the
tetrahedra adjacent to a newly inserted point in an
incrementally constructed triangulation, we are guar-
anteed to obtain a Delaunay triangulation.

2.2. Alpha Shapes

The Delaunay triangulation of our point set triangu-
lates the convex hull of the point set, and as such is
not suitable for reconstruction. Instead, the �-shape
of a point set is the set of triangles and tetrahedra
(here for simplicity we only consider the triangles),
taken from the triangles forming the Delaunay trian-
gulation, that satisfy an additional constraint: we call
it the �-test 3. Let � be a non-negative real number.
The �-test is closely related to the Delaunay property
test.

Given the triangle t not on the convex hull and the
points of the two adjacent tetrahedra p; q, we see if
those points are within the circumsphere of t. If not,
and the radius of the sphere is less than �, we accept
t. If so, we �nd the smallest sphere circumscribing t
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Figure 1: Edge ipping for Delaunay triangulations. The �rst �gures show a triangle ip in 2-D; the last show
the possible tetrahedrizations of �ve points.

and one of p; q. If the radius of that sphere is smaller
than �, we accept.

All triangles that are rejected are not in the �-
shape, so what remains is a subset of the Delaunay
triangulation which, after an adjustment of �, should
more closely follow the topology of the point set. We
can see in Figure 2 that for very large values of � the
�-shape is the convex hull; this is as we would expect,
since all spheres circumscribed by points in the �gure
would be smaller than the �-sphere. As � approaches
0, the �-shape is exactly the point-set; since alpha
is smaller than all circumscribed spheres, no triangle
passes the �-test. The �gure also shows a well-chosen
� that yields the desired result, for a reasonably uni-
formly sampled surface.

2.3. Limitations of Alpha Shapes

Certain surface discontinuities and surface arrange-
ments are not properly detected by �-shapes; for
these, there exists no value of � that includes all de-
sired triangles and deletes all undesired triangles. The
following �gures illustrate just a few of these situa-
tions:

� interstice: Figure 3 shows a break in the surface. A
standard �-shape has no way to tell between sur-
face points and the points marking the edge of the
interstice, so it covers the interstice.

� neighbor: The �gure shows two separate objects
whose surfaces are near to each other. Again, an �-
shape passes triangles that connect points on both
objects.

� joint: The �gure also illustrates a discontinuity
where there is a sharp turn, or joint. �-shapes of-
ten give a "webbed-foot" appearance at such joints,
since they improperly connect the adjacent surfaces.

Figure 3: �-shape demonstrating failure between sur-
faces and at joints and interstices

2.4. Previous Work

The concept of �-shapes has previously been used for
reconstruction of smooth surfaces 1.

Anisotropic Delaunay triangulations have been ex-
plored previously, in the application area of two-
dimensional mesh generation. Bossen and Heckbert 2

apply a 2 � 2 metric tensor to quantify desired mesh
element size as a function of position. A modi�ed De-
launay criterion, taking this anisotropy into account,
generates unstructured meshes for complex domains.
They suggest extension to three-dimensions is appro-
priate, but that tetrahedrization is topologically much
more complex than similar triangulation.

Our �-shape techniques can be used for the poly-
gonization of implicit surfaces by reconstructing the
surfaces from triangulated point samples. The direct
polygonization of implicit surfaces is an entirely di�er-
ent thrust of research; current investigation into using
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Figure 2: �-shapes: a single point set with � = f0; :19; :25; :75; 1g

Morse and catastrophe theory for ensure topological
consistency has provided successful, though complex
to implement 10.

Other techniques involve the construction of a
signed distance function, then reconstructing the sur-
face by �nding the zero set of the function using stan-
dard polygonization techniques 7; 8. Hoppe et al., for
example, assume that the points are su�ciently uni-
formly distributed 5.

3. Anisotropic Alpha Shapes

We claim that triangulation of a set of points can be
improved signi�cantly with anisotropic �-shapes, in
which the sphere used in the �-test is deformed as ne-
cessitated by local properties. The interstice disconti-
nuity mentioned above is an excellent example of a sit-
uation whose handling can be substantially improved
by anisotropic �-shapes. We would like for triangles
spanning the interstice to fail the test and be deleted
from the �-shape; to do this we compress the �-test
sphere, or �-ball, along an axis perpendicular to a lo-
cal plane separating the interstice.

This procedure amounts to elongating space along
that direction, which corresponds closely to the gen-
eral direction of the normals in the neighbourhood of
the points involved. When such surface-normal infor-
mation is available at each point, we use it to modify
the shape of the �-ball, and therefore the local metric
tensor.

Formally, anisotropy is speci�ed by the following pa-
rameters: the 3 radii ri of the ellipsoid de�ning the
metric, and the rotation of this ellipoid. The corre-
sponding metric tensor is then

M = RSRT

where R is a rotation matrix, and S is a diagonal ma-
trix with 1=ri on the diagonal. In our case, we will let
r1 = r2 = r3. This value will be related to the com-
pression factor as determined by an interactive user

input and the local normal correlation. Assuming the
metric tensor is locally almost constant, the distance
between two points x and y is then approximated by

d(x; y) =
p
(x� y)TM(x� y):

Measuring this distance is equivalent taking the usual
Euclidean distance in a normalized space, elongated
such that the ellipsoid becomes a sphere.

For instance, triangles spanning an interstice will
generally contain points whose normals are nearly co-
linear. Thus to avoid connecting points on \opposite"
surfaces, we arti�cially stretch space to make them
appear farther apart.

In Figure 4A, we show a triangle consisting of points
in two separate surfaces, in an interstice discontinuity.
The original �-ball, actually an �-circle in this two-
dimensional example, is easily larger than the trian-
gle's circumscribing circle. Given the normal informa-
tion for each point, and the resultant normal for the
triangle d, we can compress the �-circle (Figure 4B)
in a manner which will fail this interstice triangle. Or
equally, we can stretch the intervening space (Figure
4C) and test against the original �-circle, also deleting
the triangle as desired.

3.1. Computing the Local Anisotropy

In our system, anisotropy is determined on a triangle
by triangle basis. When given three points, we obtain
(possibly an approximation of) the corresponding nor-
mals, say n1; n2; n3, and perform the following com-
putation to attempt at identifying the local normal
direction.

Over the eight possible sign combinations, we com-
pute the vector that maximizes the value of n where

n = max
(s1;s2;s3)2f(�1;�1;�1)g

ks1n1 + s2n2 + s3n3k

This vector is then normalized giving a local normal
direction d. A user input parameter, which we call � ,
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Figure 4: Anisotropic�-test. 4A: An interstice triangle which would pass given the current �. 4B: The compressed
�-balls now fails the triangle. 4C: Equally, the expanded points now fail for the original �-ball.

is used to determine the amount of scaling the sphere
undergoes in that direction. In other words the rota-
tion matrices R align the major ellipsoid axis with d.
The method above captures well the local normal di-
rection information if the normals are su�ciently well
aligned. We found that averaging the normals and us-
ing the resulting magnitude as an additional multi-
plicative factor produced worse results.

3.2. Retriangulating

The new �-ellipsoid is used in the �-test; the trian-
gle's points are circumscribed to a similar ellipsoid and
compared to the �-ellipsoid. In practice, it is much eas-
ier to compress the points along the d direction by �
and use the regular �-test. We call this the anisotropic
�-test.

A fundamental contribution of this work is incre-
mental retriangulation based on a user-speci�ed fac-
tor, � , for the inuence of the anisotropy. The local
normal direction d is multiplied by � , so the user has
direct control of the anisotropy; � = 1 creates an
anisotropic �-test equal to the standard �-test. The
user modulates � and � to better �nd the desired tri-
angulation of the input point set.

To retriangulate, we �rst begin with the current tri-
angulation T�;� , which naturally begins as the Delau-
nay triangulation which is T�;1 . We then apply our
anisotropic �-test to each triangle in T�;� , and ip the
triangle if it fails. Newly created triangles are added to
the work queue and tested normally. This allows the
possibility of a ipping cycle, which can in turn re-
sult in in�nite loops of retriangulation; to avoid this,
we save a set of ipped triangles and do not test the
same triangle more than once.

In practice, the user adjusts � in small increments,
which causes relatively few ips.

4. Density-scaled Alpha

4.1. Density Determination

Each point p in a general set of points P has a local
point density property, de�ned as

�(p) =
X

q2P

1�
d(q; p)

�
8q such that d(q; p) < �;

where � is the constant radius of the local neighbor-
hood and d(x;y) is the Euclidean distance function.

When �(p) >
P

q2P

�(q)
jP j

(when local density is more

than average), we know certain characteristics about
the model region surrounding p, depending on the
point distribution.

In a point set generated with uniform surface distri-
bution, such high-density areas are necessarily those
where two separate surfaces are in close proximity.
This can, as expected, occur at interstice disconti-
nuities or with two neighboring but separate objects.
High densities also are observed on the inside of joint
discontinuities where the surface is bent back on itself.
In point sets with non-uniform distribution, higher
densities are found where model description requires
it{such as curved surfaces, and to a lesser degree,
joints. It is also possible for separate objects in a model
to have di�erent point density, in which case � can be
used as to determine which object a point is associated
with.

4.2. Scaling Algorithm

After computing density information for each point,
we utilize this data when computing the �-shape. The
points and circumsphere are determined as normal,
but they are compared to a scaled �-ball.

This new �0 will be identical to � except when �(t)
is greater than one, in which case �0 = �=�(t)�. The �
value is a factor that is adjusted interactively by the
user, similar to �, when generating an �-shape. Let �

c The Eurographics Association 1998



6 Marek Teichmann and Michael Capps / Surface Reconstruction with Anisotropic Density-Scaled Alpha Shapes

be the global average density, over the entire point set.
�(t) represents the density of the 4abc being tested,
which is computed in one of the following ways:

� average density: �(t) = �(a)+�(b)+�(c)
3��

� maximum density: �(t) = max(�(a);�(b);�(c))
�

� maximum density di�erence:
�(t) = max(j�(a)��(b)j;j�(a)��(c)j;j�(b)��(c)j)

�

� max density ratio: �(t) = max(j �(i)
�(j) j) 8i; j 2

fa; b; cg; i 6= j

Using the average or maximum density reduces the
size of the �-ball in areas where point density is
high, as desired. Using the maximum point density is
more e�ective in deleting triangles that connect high-
density points to low-density points. Note that � is
not modi�ed when �(t) is less than the �, since that
has the undesired e�ect of making it easier for very
large triangles on the convex hull to pass the �-test
and remain in the �-shape.

Setting a triangle's density to be the largest den-
sity di�erence in its points causes triangles which con-
nect high-density and low-density areas to be removed
from the �-shape. This is most e�ective in models
where separate objects have di�erent average point
densities. It can give undesirable e�ects, however, in
non-uniformly distributed point-sets; it tends to delete
triangles connecting complex and simple areas of the
model such as straight edges and curved joints.

5. Implementation and Results

5.1. Implementation

To implement our �-shapes, we used as a basis the De-
tri 2.2 package written by Ernst Mucke 6. It employs a
variant of the randomized incremental-ip algorithm
due to Edelsbrunner and Shah 4. The time complexity
of the code is roughly proportional to the number of
triangles in the �nal triangulation. In the worst case,
this is quadratic in the number of input points, but
for most cases it is closer to linear. The method re-
quires exact (long-integer) arithmetic. The resulting
slow-down due to the lack of adequate hardware sup-
port is reasonably compensated by a well tuned long-
integer package. Though exact arithmetic is slower
than oating-point arithmetic, it is necessary to ensure
a robust solution, and robustly deal with point sets
which might be highly degenerate. The above package
is used for the precomputation step which computes
the Delaunay triangulation of the point set. After this
step, we use a modi�ed version of the Delaunay ip
present in the package for the retriangualation when
� changes.

Changes in the other parameters, � and � do not
require retriangulation. To this package, we added our

own oating point alpha-testing code, as well as a
visualization interface. The main data structure is a
triangle-edge data structure, a generalization of the
classical winged-edge data structure for maintaining
planar triangulations 9.

To allow the user to change � at an interactive
rate, and thereby �nd a proper subset of the trian-
gulation, we precompute the radius of the appropriate
circumscribed sphere for each triangle. In this way,
each change of � requires only a single comparison for
each triangle to determine if it should be displayed.

The table in Figure 6 shows the times for the steps
in computing an �-shape. For example, the �-shape
for a set of 360 points is computed at roughly 20
Hz; the Delaunay triangulation with anisotropic ten-
sors requires 141 milliseconds, and �-precomputation
for that triangulation requires about one second. We
found that computing �-shapes with density-scaling
requires only approximately 25% more time than
usual. For all measures, computation scales linearly
with the number of points.

5.2. Results

We see in the �rst plate of Figure 5 that density-
scaling � deletes all triangles that connect the higher-
density ball to the lower-density cylinders nearby. In
the second plate, we add normal-induced anisotropy
which eliminates the unwanted triangles across the
interstice. While the problem of joint discontinuties
has not been solved, anisotropic �-shapes do o�er a
marked improvement over conventional �-shape. Gen-
erally, the joint \webbing" will occur up to the point
sampling frequency.

The two methods combine well in this example. The
anisotropy method does remove triangles connecting
the surfaces of the sphere and the cylinders where they
face each other. However, it has no e�ect on trian-
gles that would ordinarily be on the convex hull, i.e.
those connecting points with similar (outward) nor-
mals. Density-scaling works well in exactly that situ-
ation, as seen in the �gure.

6. Conclusions and Future work

Anisotropic �-shapes appear to be a promising new
method for reconstructing triangulated surfaces from
point sets, which have or from which one can extract
local normal information. They are clear superior in
the handling of \di�cult" point sets that regular �-
shapes. However, they rely on user input and it would
be interesting to algorithmically determine the set-
tings for the user speci�ed parameters.
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Figure 5: The same point-set as Figure 3, �rst with density scaling, then with anisotropy.

number �-change with
of points �-change density-scaling �-precomputation retriangulation

360 43 msec 56 msec 1.02 sec 141 msec
600 78 msec 99 msec 2.23 sec 244 msec
965 137 msec 172 msec 3.67 sec 439 msec
2875 480 msec 570 msec 6.69 sec 1644 msec

Figure 6: �-shape computational steps on an SGI R10K O2

Bossen and Heckbert 2 apply anisotropy for the gen-
eration of graded triangular meshes with density vary-
ing according to external information. These can be
used for applications such as �nite element analysis.
We believe their methods can be generalized to three
dimensions using an approach similar to ours.
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